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Semirelativistic Lagrange mesh calculations
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The Lagrange mesh method is a very powerful procedure to compute eigenvalues and eigenfunctions of
nonrelativistic Hamiltonians. The trial eigenstates are developed in a basis of well-chosen functions and the
computation of Hamiltonian matrix elements requires only the evaluation of the potential at grid points. It is
shown that this method can be used to solve semirelativistic two-body eigenvalue equations. As in the non-
relativistic case, it is very accurate, fast, and very simple to implement.
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I. INTRODUCTION

The Lagrange mesh method is a very accurate and sim
procedure to compute eigenvalues and eigenfunctions
two-body Schro¨dinger equation@1–3#. The trial eigenstates
are developed in a basis of well-chosen functions and Ha
tonian matrix elements are obtained with a Gauss appr
mate quadrature. No numerical evaluation of matrix e
ments is required, only the computation of the potentia
grid points. The spacings between grid points depend on
basis chosen and are not necessarily equal. This method
be extended to treat, very accurately, three-body system
well in nuclear physics as in atomic physics~see, for in-
stance, Ref.@4#!. Recently, a general procedure for derivin
new Lagrange meshes related to orthogonal or nonortho
nal bases has been developed@5#.

The Fourier grid Hamiltonian method is another simp
procedure to solve a two-body Schro¨dinger equation on a
mesh@6,7#. It relies on the fact that the kinetic-energy oper
tor is best represented in momentum space, while the po
tial energy is generally given in coordinate space. T
method has been generalized to treat a semirelativistic op
tor in the three-dimensional space for bound states@8#. It has
also been applied to the study of scattering equations@9#.
This method requires a mesh of equally spaced grid poi
As a consequence, a large number of points can somet
be necessary to reach convergence.

It has recently been shown that the Fourier grid Ham
tonian method is equivalent to a Lagrange mesh calcula
in which the matrix elements of the kinetic-energy opera
are computed by a discrete Fourier transformation@10# ~this
makes possible the computation of bound states for sem
lativistic kinematics!. In order to escape from the constrai
of equally spaced grid points, a new method is develo
here to compute the kinetic matrix elements in the Lagra
mesh method. The idea, already used in Ref.@11# but in
another context, is to compute the square root of an appr
mation to the square of the semirelativistic kinetic-ene
operator. It is shown in this paper that very accurate eig
1063-651X/2001/64~1!/016703~6!/$20.00 64 0167
le
a

il-
i-
-
t

he
an
as

o-

-
n-
s
ra-

s.
es

-
n
r

e-

d
e

i-
y
n-

values and eigenfunctions of a semirelativistic Hamilton
can be computed very fast and very easily with this modifi
Lagrange mesh method. It is worth noting that the Lagran
mesh technique can be applied if the potential is nonlocal
if couplings exist between different channels.

The nonrelativistic and semirelativistic Lagrange me
methods are described in Sec. II, while Sec. III presents
ansatz to easily compute the only nonlinear parameter of
method. Test calculations are presented in Sec. IV, and s
concluding remarks are given in Sec. V.

II. METHOD

A Lagrange mesh is formed ofN mesh pointsxi associ-
ated with an orthonormal set ofN indefinitely derivable func-
tions f j (x) @1–3#. The Lagrange functionf j vanishes at all
mesh points but one; it satisfies the Lagrange conditions

f j~xi !5l i
21/2d i j . ~1!

Thexi andl i are connected with a Gauss quadrature form

E
0

`

g~x!dx'(
k51

N

lkg~xk!. ~2!

Here, the case of the Gauss-Laguerre quadrature is con
ered because the domain is (0,`). The Gauss formula~2! is
exact wheng(x) is a polynomial of degree 2N21 at most,
multiplied by exp(2x). The Lagrange-Laguerre mesh is the
based on zeros of a Laguerre polynomial of degreeN @1#,

LN~xi !50. ~3!

The explicit form of the corresponding regularized Lagran
functions is given by

f i~x!5~21! ixi
21/2x~x2xi !

21LN~x!exp~2x/2!, ~4!

which is simply a polynomial of degreeN, multiplied by an
exponential function. They vanish at the origin and atxj with
©2001 The American Physical Society03-1
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j Þ i . In fact, most calculations in the following can be pe
formed without explicit expressions of thel i and f i(x);
these quantities are only necessary to plot the wave fu
tions. The factorsl i must be computed in the case of
nonlocal interaction@10#.

For example, let us consider the eigenvalue equation

@T~pW 2!1V~r !#uc&5Euc&, ~5!

whereT(pW 2) is the kinetic-energy term of the Hamiltonia
andV(r ) the potential that depends only on the radial co
dinater. A variational calculation is performed with the tria
state

uc&5(
j 51

N

Cj u f j&, ~6!

where

^rWu f j&5
f j~r /h!

Ahr
Yl m~ r̂ !, ~7!

and wherel is the orbital angular-momentum quantu
number. The coefficientsCj are linear variational paramete
and the scale factorh is a nonlinear parameter aimed at a
justing the mesh to the domain of physical interest. W
Eqs.~2! and ~1!, the coefficients read

Ci5Ah l iu~hxi !, ~8!

where u(r ) is the regularized radial part of the trial wav
function. They provide a direct picture of the wave functi
at mesh points. However, contrary to some other mesh m
ods, the wave function is also defined between mesh po
by Eqs.~4!, ~6!, and~7!.

At the Gauss approximation,^ f i u f j&'d i j , and the poten-
tial matrix elements are given by

^ f i uV~r !u f j&'V~hxi !d i j . ~9!

The potential matrix is both simple to obtain and diagon
Let us assume that the matrix elements^ f i uTu f j&'Ti j are
known. With Eqs.~6! and~9!, the variational method applie
to Eq. ~5! provides a system ofN mesh equations

(
j 51

N

@Ti j 1V~hxi !d i j 2Ed i j #Cj50. ~10!

We shall see that, in this system, the first term is easy
compute. The second one is diagonal and only involves
ues of the potential at scaled mesh points.

A. Nonrelativistic Hamiltonian

For a nonrelativistic Hamiltonian, the operatorT(pW 2) is
simply given by pW 2/(2m), where m is the reduced mass
With Eq. ~2!, radial kinetic matrix elements are given by
01670
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Ti j 5
1

2mh2 S t i j 1
l ~ l 11!

xi
2

d i j D , ~11!

where~\51!

t i j 5E
0

`

f i~x!S 2
d2

dx2D f j~x! dx'2l i
1/2f j9~xi !. ~12!

This compact expression is exact for some Lagrange mes
This is not the case for the regularized Laguerre mesh.
exact expression can easily be obtained~see appendix in Ref
@2#!. However, as shown in Ref.@3#, it is preferable to use the
approximations~11! and ~12!. The kinetic matrix elements
are then even easier to obtain and read@3#

t i j 5H ~2 ! i 2 j~xixj !
21/2~xi1xj !~xi2xj !

22 ~ iÞ j !,

~12xi
2!21@41~4N12!xi2xi

2# ~ i 5 j !.
~13!

The simplicity of this approach is obvious on Eq.~10!. An-
other striking property, which is not obvious at all, has be
observed on many examples@1–3#: the accuracy of the mes
approximation remains close to the accuracy of the origi
variational calculation without the Gauss approximation.

B. Semirelativistic Hamiltonian

In natural units (\5c51), a semirelativistic Hamiltonian
is written

H5ApW 21m1
21ApW 21m2

21V~r !. ~14!

The eigenvalue equation associated with this Hamiltonia
generally called the spinless Salpeter equation. To apply
method described above, it is necessary to compute the

trix elementŝ f i uApW 21m2u f j&. This can be performed usin
a four-step method suggested in Ref.@11# ~see also refer-
ences therein!:

~i! Computation of the matrixM2 whose elements are

~M2! i j 5^ f i upW 21m2u f j&. ~15!

They are calculated as in the nonrelativistic case with E
~11! and ~12!.

~ii ! Diagonalization of the matrixM2. If D2 is the diago-
nal matrix formed by the eigenvalues ofM2, we have

M25SD2S21, ~16!

where S is the transformation matrix composed of th
normalized eigenvectors.

~iii ! Computation ofD, the diagonal square root matrix o
D2, by taking the positive square roots of all diagonal e
ments ofD2.

~iv! Determination of the square root matrixM in the
original basis by using the transformation~16!

M5SDS21. ~17!
3-2
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SEMIRELATIVISTIC LAGRANGE MESH CALCULATIONS PHYSICAL REVIEW E64 016703
The elementsMi j of the matrix computed with Eq.~17! are

approximations of the numbers^ f i uApW 21m2u f j&. The calcu-
lation is not exact for two reasons. First, the elements (M2) i j
are computed with approximate formulas~11! and~12!. Sec-
ond, the diagonalization is performed in the limited defi
tion space of the trial function~6!. In order to compute ex-

actly the matrix elements of the operatorApW 21m2, it is
necessary to compute exactly all eigenvalues of the infi
matrix whose elements arêpW 21m2&, again exactly com-
puted. This is obviously not possible. We shall see in Sec
that the procedure proposed here can give very good res

The kinetic matrix elements being calculated not exac
for the reasons given above, and the potential matrix
ments being computed at the Gauss approximation~9!, the
variational character of the method cannot be guarant
This is only possible if an exact quadrature is performed
practice for a sufficiently high number of basis states,
method is often variational~eigenvalues computed are a
upper bounds! or antivariational~eigenvalues computed ar
all lower bounds!. Examples will be given below.

III. SCALE PARAMETER

The accuracy of the eigenvalues and eigenfunctions
pends on two parameters: The number of mesh pointsN and
the value of the scale parameterh. The dependence of th
eigenvalues onh is illustrated in Fig. 1 for the semirelativis
tic model of Ref.@11#. This behavior is typical; it is obtained
for all states and for all potentials studied here, as well
nonrelativistic as semirelativistic kinematics. Whenh in-
creases from zero, a rapid decrease of the eigenvalues is
obtained, followed by a long plateau. As the method is
variational, there is no obvious procedure to determine
best value ofh. When h is too large, all points of the
Lagrange mesh are located in the asymptotic tail of the w
functions and it is then impossible to obtain a good value

FIG. 1. Masses of the 1S, 2S, and 1P uū mesons, with the
semirelativistic model of Ref.@11#, as a function of the scale pa
rameterh, for two numbers of mesh pointsN510 and 20. The
values ofh predicted by the algorithm described in Sec. III are a
indicated for a value ofe51026.
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the eigenvalue. Fortunately, the plateau is very long and
value ofh can be taken in a wide range.

Nevertheless, it could be interesting to have a proced
to estimate directly a good value ofh in order to avoid a
search, which is always time consuming. We have remar
that the best results are obtained when the mesh covers
main part of the wave function and that the last mesh po
are located in its asymptotic tail. So, if we choose a pointr a
in the tail of the wave function, the value ofh can be ob-
tained byh5r a /xN , wherexN is the last zero considered.

A value of r a can be computed using the technique dev
oped in Ref.@8#. The first step is to find a potentialV`(r )
that matches, at best, the potentialV(r ) for r→`. The sec-
ond step is to choose a trial stateul& that depends on one
parameterl, taken for instance, as the inverse of a distan
The best matching between the state studied and the
state is obtained by means of the variational principle. T
value ofl is determined by the usual condition

]^luT1V`~r !ul&
]l

50, ~18!

whereT is the kinetic part of the Hamiltonian considered.
the case of the spinless Salpeter equation, the variati
solution is computed using the fundamental inequality

^ApW 21m2&<A^pW 2&1m2. ~19!

The regularized radial partul(r ) of the trial stateul& is then
analyzed to find the value ofr e that satisfies the following
condition

ul~r e!

max@ul~r !#
<e, ~20!

wheree is a number small enough to neglect the contribut
of ul(r ) for values ofr greater thanr e . This value ofr e is
then taken as the valuer a . Details on this procedure, whic
is very fast, are given in Ref.@8#. With this method, we have
always obtained a value ofh within the plateau~see Fig. 1!,
provided small enough values ofe are considered~typically
in the range 1024–1027). If necessary, the value ofh ob-
tained can be a starting point for a new and better deter
nation of the scale parameter.

For a given value ofr a , the accuracy increases with th
number of mesh pointsN. But there is a limit on the values
of N that can be used. The points of the mesh are the zero
the Laguerre polynomial. So it is necessary to compute th
zeros with enough precision not to spoil the accuracy of
method. With standard routines@12#, up to the 80 first zeros
can be calculated with high precision. With specific tec
niques, this number can reach 120.

It is worth noting that in an usual variational method, lik
in Ref. @11#, the addition of new basis states does not mod
the Hamiltonian matrix elements calculated with the sma
basis. The situation is different for the Lagrange me
method. TheN zeros of the polynomialLN are located be-
tween theN11 zeros of the polynomialLN11. As a conse-
quence, all matrix elements are changed when the numbN
3-3
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TABLE I. Masses of 1S, 2S, and 1P states, in arbitrary units, for the Kratzer potential with nonrelativistic kinetic energy, and
parameter values:m51, D50.5, anda51.5. The computation is performed withi 310 basis functions for the Lagrange mesh method a
with i Gaussian wave functions. The value ofr a is the one predicted by the algorithm described in Sec. III (e51025). The exact results are
also given fori 5`.

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
r a 20.32 47.72 47.72

1 1.7 989 491 271 1.8 090 140 683 1.9 212 831 800 1.8 970 189 881 308 1.9 020 584 965
2 1.7 989 357 935 1.8 026 218 788 1.9 212 503 621 1.9 236 462 941 1.8 970 179 601 704 1.8 973 990 44
3 1.7 989 353 246 1.7 999 271 967 1.9 212 496 211 1.9 217 084 733 1.8 970 179 570 392 1.8 970 487 46
4 1.7 989 351 384 1.7 991 388 244 1.9 212 495 444 1.9 215 316 924 1.8 970 179 569 203 1.8 970 267 07
5 1.7 989 351 013 1.7 990 179 046 1.9 212 495 247 1.9 213 213 780 1.8 970 179 568 941 1.8 970 199 78
6 1.7 989 350 909 1.7 989 714 114 1.9 212 495 100 1.9 212 845 605 1.8 970 179 568 899 1.8 970 187 89
7 1.7 989 350 873 1.7 989 445 797 1.9 212 495 048 1.9 212 595 866 1.8 970 179 568 893 1.8 970 181 29
8 1.7 989 350 860 1.7 989 382 512 1.9 212 495 026 1.9 212 525 000 1.8 970 179 568 892 1.8 970 181 00
` 1.7 989 350 844 1.9 212 495 003 1.8 970 179 568 882
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is modified. Moreover, if the value ofh is not changed, the
value of r a is modified, and vice versa. Let us recall th
r a5hxN .

IV. NUMERICAL TESTS

We have tested the accuracy of our method with a la
number of different potentials~Coulomb-type, finite range
confining, coupled channels, nonlocal interaction, etc.! and
with a wide range of particle masses. We shall present h
our results for three potentials in the case of two identi
particlesm5m15m2. Only masses of the 1S, 2S, and 1P
states are given. The number of points of the mesh, that
say, the number of basis states, is limited to 80.

To check our method, we have also compared our res
with those obtained with a variational method: The devel
ment of the trial state with Gaussian functions@13#. This last
method is known to yield very precise results in the tw
body and many-body quantum problems. In this paper, e
Gaussian function depends on two parameters: its amplit
which is a linear variational parameter, and its size, which
a nonlinear parameter. The sizes of the various Gaus
functions can be determined stochastically or with an eff
tive formula~arithmetic progression for instance!. In this pa-
per, we chose to compute these parameters with a full m
mization procedure, in order to obtain the best possible lo
bound. But it is very difficult to obtain results with more tha
eight functions because these functions are not orthog
and redundancies appear in the size parameters. Let us
that the first radial excitation must be computed with at le
two Gaussian functions.

The precision of the Lagrange mesh method is known
be very good for nonrelativistic models@1–3#. Nevertheless,
we present here the results obtained for the Kratzer pote
~@14# p. 178!

V522DS a

r
2

a2

2r 2D . ~21!
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Supplemented by a nonrelativistic kinetic energy, the bin
ing energies are given by the following analytical formula
a function of the radial quantum numbern (0,1, . . . ) and the
orbital angular momentuml

E52
2ma2D2

~n11/21A2ma2D1~ l 11/2!2!2
. ~22!

Results for the Kratzer potential with nonrelativistic kin
matics are gathered in Table I. For a fixed number of ‘‘b
sis’’ states, the Gaussian method gives better results than
Lagrange mesh method. Nevertheless, the number
Lagrange functions can be easily increased and a very
precision can be reached. In this case, the Lagrange m
method is variational, but counterexamples exist@10#.

We have also tested our method with a semirelativis
model used to describe mesons as quark-antiquark s
@11#. The short-range part of the interaction is of Coulom
type, while the long-range is a confining potential

V52
k

r
1ar1C, ~23!

with k50.437,a50.203 GeV2, andC520.599 GeV. For
the quarku, we havem50.150 GeV. Masses of someuū
mesons for this model are presented in Table II. No ex
result is known, but the masses obtained with the two me
ods are in good agreement. Because of the redundancy p
lem with the Gaussian functions, a better convergence ca
obtained for the Lagrange mesh method, which is antiva
tional in this case.

The eigenvalue equation with a semirelativistic Ham
tonian supplemented by a Coulomb-type potential

V52
k

r
~24!

is often called the Herbst’s equation (k is a positive number
without dimension!. It has been intensively studied, but th
3-4
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8 117
9 078
6 201
4 923
6 711
6 124
3 528
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TABLE II. Masses in GeV of 1S, 2S, and 1P uū mesons, with the semirelativistic model of Ref.@11#.
The computation is performed withi 310 basis functions for the Lagrange mesh method and withi Gaussian
wave functions. The value ofr a is the one predicted by the algorithm described in Sec. III (e51027). The
results obtained in Ref.@11# are also given.

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
r a 26.81 (GeV)21 26.74 (GeV)21 26.64 (GeV)21

1 0.70 237 255 0.73 445 725 1.4 154 184 1.2 402 390 936 1.2 581 207
2 0.70 257 022 0.70 812 172 1.4 158 542 1.4 263 285 1.2 402 381 667 1.2 416 39
3 0.70 258 437 0.70 403 501 1.4 158 778 1.4 179 611 1.2 402 381 681 1.2 404 15
4 0.70 258 719 0.70 304 037 1.4 158 826 1.4 167 156 1.2 402 381 688 1.2 402 68
5 0.70 258 805 0.70 274 634 1.4 158 840 1.4 163 172 1.2 402 381 697 1.2 402 44
6 0.70 258 839 0.70 264 838 1.4 158 846 1.4 160 095 1.2 402 381 710 1.2 402 39
7 0.70 258 854 0.70 261 279 1.4 158 849 1.4 159 263 1.2 402 381 729 1.2 402 38
8 0.70 258 863 0.70 259 896 1.4 158 850 1.4 159 018 1.2 402 381 754 1.2 402 38
Ref. 0.703 1.416 1.240
a
un
d

en-
is

-
r
o
in

ble.
al-

od
ssian
0
g
de-
spectra is not known analytically. Nevertheless, approxim
tions are available for some eigenvalues. For the gro
state, we have compared our results with a lower bound
to Martin and Roy@15#

E0>2mA11A12k2

2
for k,1, ~25!

and with an upper bound due to Lucha and Scho¨berl @16#

E0<min
x

H F 128

15p
FS 2

1

2
,2;

7

2
;12

m2

x2 D 2kGxJ
for k<

16

3p
, ~26!
01670
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whereF is an hypergeometric function@17#, and wherex is
a minimization parameter. For a vanishing angular mom
tum, an approximation for all radial quantum numbers
known up to orderk7 @18#. The precision of all these ap
proximate formulas increases whenk decreases. Results fo
the Herbst’s equation are shown in Tables III and IV for tw
values ofk. The two methods give similar results and are
agreement with the bounds and approximation availa
Again, the Lagrange mesh method is antivariational and
lows a better convergence than the Gaussian method.

It is worth noting that with 80 basis states the meth
proposed here can be several times faster than the Gau
method with eight functions~by a factor that can reach 10
in some cases!. The diagonalization is more time consumin
for the Lagrange mesh method, but there is no lengthy
termination of nonlinear parameters to perform.
9 670
386 266
389 573
965 679
831 427
744 770
719 455
712 517
TABLE III. Masses in GeV of 1S, 2S, and 1P states for Herbst’s equation withm50.5 GeV andk50.05. The computation is
performed withi 310 basis functions for the Lagrange mesh method and withi Gaussian wave functions. The value ofr a is the one predicted
by the algorithm described in Sec. III (e51026). A lower bound (L), an approximation up to orderk7 ~A!, and an upper bound~U! are given
when they are available~see Sec. IV!.

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
r a 1414.63 (GeV)21 3274.43 (GeV)21 3274.43 (GeV)21

1 0.999 687 256 848 0.999 734 683 111 0.999 921 835 334 0.9 999 218 678 794 0.9 999 292 60
2 0.999 687 260 874 0.999 696 226 562 0.999 921 835 623 0.999 926 963 018 0.9 999 218 678 794 0.9 999 229
3 0.999 687 262 433 0.999 689 200 665 0.999 921 835 944 0.999 922 679 874 0.9 999 218 678 794 0.9 999 220
4 0.999 687 262 779 0.999 687 740 479 0.999 921 836 103 0.999 922 071 982 0.9 999 218 678 794 0.9 999 219
5 0.999 687 262 876 0.999 687 397 211 0.999 921 836 163 0.999 922 010 639 0.9 999 218 678 794 0.9 999 218
6 0.999 687 262 910 0.999 687 365 466 0.999 921 836 186 0.999 921 996 493 0.9 999 218 678 794 0.9 999 218
7 0.999 687 262 925 0.999 687 320 679 0.999 921 836 196 0.999 921 990 438 0.9 999 218 678 794 0.9 999 218
8 0.999 687 262 932 0.999 687 286 164 0.999 921 836 200 0.999 921 846 628 0.9 999 218 678 794 0.9 999 218
L 0.999 687 255 538
A 0.999 687 262 947 0.999 921 836 208
U 0.999 687 267 936
3-5



8 096
09 017
22 236
15 358
05 023
42 900
28 139
15 791
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TABLE IV. Same as Table III but withm50.5 GeV andk50.5.

1S 2S 1P
i Lagrange Gauss Lagrange Gauss Lagrange Gauss
r a 137.01 (GeV)21 324.90 (GeV)21 324.90 (GeV)21

1 0.96 645 459 0.97 287 140 0.99 178 095 0.9 921 160 226 777 0.9 928 911 71
2 0.96 653 341 0.96 818 509 0.99 180 940 0.99 252 953 0.9 921 160 108 390 0.9 922 346 6
3 0.96 654 234 0.96 703 865 0.99 181 276 0.99 198 052 0.9 921 160 110 896 0.9 921 363 7
4 0.96 654 384 0.96 670 985 0.99 181 348 0.99 186 778 0.9 921 160 111 002 0.9 921 199 6
5 0.96 654 431 0.96 660 465 0.99 181 372 0.99 183 946 0.9 921 160 111 013 0.9 921 168 7
6 0.96 654 450 0.96 656 792 0.99 181 382 0.99 182 810 0.9 921 160 111 014 0.9 921 162 2
7 0.96 654 459 0.96 655 426 0.99 181 386 0.99 181 883 0.9 921 160 111 015 0.9 921 161 0
8 0.96 654 463 0.96 654 883 0.99 181 389 0.99 181 581 0.9 921 160 111 015 0.9 921 160 8
L 0.96 592 583
A 0.96 664 937 0.99 182 664
U 0.96 694 460
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V. CONCLUDING REMARKS

In this paper, we have shown that the Lagrange m
method can be used to solve nonrelativistic and semirela
istic two-body eigenvalue equations. This method is v
convenient:

The technique is very easy to implement: It requires o
the evaluation of the potential at some grid points and not
calculation of matrix elements in a given basis. The kine
matrix elements are computed with a standard proced
The method generates directly the values of the radial pa
the wave function at grid points. However, contrary to so
other mesh methods, the wave function is also defined
tween mesh points. Moreover, the extension of the metho
the cases of nonlocal interactions or coupled channel e
tions is trivial.

It is very precise: The accuracy of the solutions depe
only on two parameters: The number of grid points and
scale parameter. The eigenvalues are not sensitive to this
factor. Moreover, a very good estimation of this parame
can be easily obtained by using the procedure descr
s

y

,

01670
h
v-
y

y
e

c
e.
of
e
e-
to
a-

s
e
ast
r

ed

above. The number of grid points can be automatically
creased until a convergence is reached for the eigenva
This number can be as small as 20.

It is very fast: The method involves the use of symmet
real matrices of orderN, the number of grid points, which
does not exceed 100. The most time-consuming part of
method is the diagonalization of the Hamiltonian matric
This is not a problem for modern computers. Moreover, s
eral powerful techniques for finding eigenvalues and
eigenvectors exist and can be used at the best convenie

This method is very competitive with all other techniqu
to solve two-body eigenvalue equations.
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